Equations Defining Recursive Extensions as Set Theoretic Complete Intersections

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SET-THEORETIC COMPLETE INTERSECTIONS IN CHARACTERISTIC p

We describe a class of toric varieties which are set-theoretic complete intersections only over fields of one positive characteristic p.

متن کامل

On toric varieties which are almost set-theoretic complete intersections

We describe a class of affine toric varieties V that are set-theoretically minimally defined by codimV + 1 binomial equations over fields of any characteristic.

متن کامل

Almost set-theoretic complete intersections in characteristic zero

We present a class of toric varieties V which, over any algebraically closed field of characteristic zero, are defined by codim V +1 binomial equations .

متن کامل

On Binomial Set-Theoretic Complete Intersections in Characteristic p

Using arithmetic conditions on affine semigroups we prove that for a simplicial toric variety of codimension 2 the property of being a set-theoretic complete intersection on binomials in characteristic p holds either for all primes p, or for no prime p, or for exactly one prime p.

متن کامل

The Stanley-Reisner ideals of polygons as set-theoretic complete intersections

We show that the Stanley-Reisner ideal of the one-dimensional simplicial complex whose diagram is an n-gon is always a set-theoretic complete intersection in any positive characteristic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tokyo Journal of Mathematics

سال: 2015

ISSN: 0387-3870

DOI: 10.3836/tjm/1437506249